Home

Nvo3 Workgroup RFCs

Browse Nvo3 Workgroup RFCs by Number

RFC7364 - Problem Statement: Overlays for Network Virtualization
This document describes issues associated with providing multi-tenancy in large data center networks and how these issues may be addressed using an overlay-based network virtualization approach. A key multi-tenancy requirement is traffic isolation so that one tenant's traffic is not visible to any other tenant. Another requirement is address space isolation so that different tenants can use the same address space within different virtual networks. Traffic and address space isolation is achieved by assigning one or more virtual networks to each tenant, where traffic within a virtual network can only cross into another virtual network in a controlled fashion (e.g., via a configured router and/or a security gateway). Additional functionality is required to provision virtual networks, associating a virtual machine's network interface(s) with the appropriate virtual network and maintaining that association as the virtual machine is activated, migrated, and/or deactivated. Use of an overlay-based approach enables scalable deployment on large network infrastructures.
RFC7365 - Framework for Data Center (DC) Network Virtualization
This document provides a framework for Data Center (DC) Network Virtualization over Layer 3 (NVO3) and defines a reference model along with logical components required to design a solution.
RFC8014 - An Architecture for Data-Center Network Virtualization over Layer 3 (NVO3)
This document presents a high-level overview architecture for building data-center Network Virtualization over Layer 3 (NVO3) networks. The architecture is given at a high level, showing the major components of an overall system. An important goal is to divide the space into individual smaller components that can be implemented independently with clear inter-component interfaces and interactions. It should be possible to build and implement individual components in isolation and have them interoperate with other independently implemented components. That way, implementers have flexibility in implementing individual components and can optimize and innovate within their respective components without requiring changes to other components.
RFC8151 - Use Cases for Data Center Network Virtualization Overlay Networks
This document describes Network Virtualization over Layer 3 (NVO3) use cases that can be deployed in various data centers and serve different data-center applications.
RFC8293 - A Framework for Multicast in Network Virtualization over Layer 3
This document provides a framework for supporting multicast traffic in a network that uses Network Virtualization over Layer 3 (NVO3). Both infrastructure multicast and application-specific multicast are discussed. It describes the various mechanisms that can be used for delivering such traffic as well as the data plane and control plane considerations for each of the mechanisms.
RFC8394 - Split Network Virtualization Edge (Split-NVE) Control-Plane Requirements
In the Split Network Virtualization Edge (Split-NVE) architecture, the functions of the NVE are split across a server and a piece of external network equipment that is called an "External NVE". The server-resident control-plane functionality resides in control software, which may be part of hypervisor or container-management software; for simplicity, this document refers to the hypervisor as the "location" of this software.
One or more control-plane protocols between a hypervisor and its associated External NVE(s) are used by the hypervisor to distribute its virtual-machine networking state to the External NVE(s) for further handling. This document illustrates the functionality required by this type of control-plane signaling protocol and outlines the high-level requirements. Virtual-machine states as well as state transitioning are summarized to help clarify the protocol requirements.
RFC8926 - Geneve: Generic Network Virtualization Encapsulation
Network virtualization involves the cooperation of devices with a wide variety of capabilities such as software and hardware tunnel endpoints, transit fabrics, and centralized control clusters. As a result of their role in tying together different elements of the system, the requirements on tunnels are influenced by all of these components. Therefore, flexibility is the most important aspect of a tunneling protocol if it is to keep pace with the evolution of technology. This document describes Geneve, an encapsulation protocol designed to recognize and accommodate these changing capabilities and needs.
RFC9469 - Applicability of Ethernet Virtual Private Network (EVPN) to Network Virtualization over Layer 3 (NVO3) Networks
An Ethernet Virtual Private Network (EVPN) provides a unified control plane that solves the issues of Network Virtualization Edge (NVE) auto-discovery, tenant Media Access Control (MAC) / IP dissemination, and advanced features in a scablable way as required by Network Virtualization over Layer 3 (NVO3) networks. EVPN is a scalable solution for NVO3 networks and keeps the independence of the underlay IP Fabric, i.e., there is no need to enable Protocol Independent Multicast (PIM) in the underlay network and maintain multicast states for tenant Broadcast Domains. This document describes the use of EVPN for NVO3 networks and discusses its applicability to basic Layer 2 and Layer 3 connectivity requirements and to advanced features such as MAC Mobility, MAC Protection and Loop Protection, multihoming, Data Center Interconnect (DCI), and much more. No new EVPN procedures are introduced.
RFC9521 - Bidirectional Forwarding Detection (BFD) for Generic Network Virtualization Encapsulation (Geneve)
This document describes the use of the Bidirectional Forwarding Detection (BFD) protocol in point-to-point Generic Network Virtualization Encapsulation (Geneve) unicast tunnels used to make up an overlay network.
RFC9638 - Network Virtualization over Layer 3 (NVO3) Encapsulation Considerations
The IETF Network Virtualization Overlays (NVO3) Working Group developed considerations for a common encapsulation that addresses various network virtualization overlay technical concerns. This document provides a record, for the benefit of the IETF community, of the considerations arrived at by the NVO3 Working Group starting from the output of the NVO3 encapsulation Design Team. These considerations may be helpful with future deliberations by working groups over the choice of encapsulation formats.
There are implications of having different encapsulations in real environments consisting of both software and hardware implementations and within and spanning multiple data centers. For example, Operations, Administration, and Maintenance (OAM) functions such as path MTU discovery become challenging with multiple encapsulations along the data path.
Based on these considerations, the NVO3 Working Group determined that Generic Network Virtualization Encapsulation (Geneve) with a few modifications is the common encapsulation. This document provides more details, particularly in Section 7.