Home

Pce Workgroup RFCs

Browse Pce Workgroup RFCs by Number

RFC4655 - A Path Computation Element (PCE)-Based Architecture
Constraint-based path computation is a fundamental building block for traffic engineering systems such as Multiprotocol Label Switching (MPLS) and Generalized Multiprotocol Label Switching (GMPLS) networks. Path computation in large, multi-domain, multi-region, or multi-layer networks is complex and may require special computational components and cooperation between the different network domains.
This document specifies the architecture for a Path Computation Element (PCE)-based model to address this problem space. This document does not attempt to provide a detailed description of all the architectural components, but rather it describes a set of building blocks for the PCE architecture from which solutions may be constructed. This memo provides information for the Internet community.
RFC4657 - Path Computation Element (PCE) Communication Protocol Generic Requirements
The PCE model is described in the "PCE Architecture" document and facilitates path computation requests from Path Computation Clients (PCCs) to Path Computation Elements (PCEs). This document specifies generic requirements for a communication protocol between PCCs and PCEs, and also between PCEs where cooperation between PCEs is desirable. Subsequent documents will specify application-specific requirements for the PCE communication protocol. This memo provides information for the Internet community.
RFC4674 - Requirements for Path Computation Element (PCE) Discovery
This document presents a set of requirements for a Path Computation Element (PCE) discovery mechanism that would allow a Path Computation Client (PCC) to discover dynamically and automatically a set of PCEs along with certain information relevant for PCE selection. It is intended that solutions that specify procedures and protocols or extensions to existing protocols for such PCE discovery satisfy these requirements. This memo provides information for the Internet community.
RFC4927 - Path Computation Element Communication Protocol (PCECP) Specific Requirements for Inter-Area MPLS and GMPLS Traffic Engineering
For scalability purposes, a network may comprise multiple Interior Gateway Protocol (IGP) areas. An inter-area Traffic Engineered Label Switched Path (TE-LSP) is an LSP that transits through at least two IGP areas. In a multi-area network, topology visibility remains local to a given area, and a head-end Label Switching Router (LSR) cannot compute an inter-area shortest constrained path. One key application of the Path Computation Element (PCE)-based architecture is the computation of inter-area TE-LSP paths. The PCE Communication Protocol (PCECP) is used to communicate computation requests from Path Computation Clients (PCCs) to PCEs, and to return computed paths in responses. This document lists a detailed set of PCECP-specific requirements for support of inter-area TE-LSP path computation. It complements the generic requirements for a PCE Communication Protocol. This memo provides information for the Internet community.
RFC5088 - OSPF Protocol Extensions for Path Computation Element (PCE) Discovery
There are various circumstances where it is highly desirable for a Path Computation Client (PCC) to be able to dynamically and automatically discover a set of Path Computation Elements (PCEs), along with information that can be used by the PCC for PCE selection. When the PCE is a Label Switching Router (LSR) participating in the Interior Gateway Protocol (IGP), or even a server participating passively in the IGP, a simple and efficient way to announce PCEs consists of using IGP flooding. For that purpose, this document defines extensions to the Open Shortest Path First (OSPF) routing protocol for the advertisement of PCE Discovery information within an OSPF area or within the entire OSPF routing domain. [STANDARDS-TRACK]
RFC5089 - IS-IS Protocol Extensions for Path Computation Element (PCE) Discovery
There are various circumstances where it is highly desirable for a Path Computation Client (PCC) to be able to dynamically and automatically discover a set of Path Computation Elements (PCEs), along with information that can be used by the PCC for PCE selection. When the PCE is a Label Switching Router (LSR) participating in the Interior Gateway Protocol (IGP), or even a server participating passively in the IGP, a simple and efficient way to announce PCEs consists of using IGP flooding. For that purpose, this document defines extensions to the Intermediate System to Intermediate System (IS-IS) routing protocol for the advertisement of PCE Discovery information within an IS-IS area or within the entire IS-IS routing domain. [STANDARDS-TRACK]
RFC5376 - Inter-AS Requirements for the Path Computation Element Communication Protocol (PCECP)
Multiprotocol Label Switching Traffic Engineered (MPLS TE) Label Switched Paths (LSPs) may be established wholly within an Autonomous System (AS) or may cross AS boundaries.
The Path Computation Element (PCE) is a component that is capable of computing constrained paths for (G)MPLS TE LSPs. The PCE Communication Protocol (PCECP) is defined to allow communication between Path Computation Clients (PCCs) and PCEs, as well as between PCEs. The PCECP is used to request constrained paths and to supply computed paths in response. Generic requirements for the PCECP are set out in "Path Computation Element (PCE) Communication Protocol Generic Requirements", RFC 4657. This document extends those requirements to cover the use of PCECP in support of inter-AS MPLS TE. This memo provides information for the Internet community.
RFC5394 - Policy-Enabled Path Computation Framework
The Path Computation Element (PCE) architecture introduces the concept of policy in the context of path computation. This document provides additional details on policy within the PCE architecture and also provides context for the support of PCE Policy. This document introduces the use of the Policy Core Information Model (PCIM) as a framework for supporting path computation policy. This document also provides representative scenarios for the support of PCE Policy. This memo provides information for the Internet community.
RFC5440 - Path Computation Element (PCE) Communication Protocol (PCEP)
This document specifies the Path Computation Element (PCE) Communication Protocol (PCEP) for communications between a Path Computation Client (PCC) and a PCE, or between two PCEs. Such interactions include path computation requests and path computation replies as well as notifications of specific states related to the use of a PCE in the context of Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS) Traffic Engineering. PCEP is designed to be flexible and extensible so as to easily allow for the addition of further messages and objects, should further requirements be expressed in the future. [STANDARDS-TRACK]
RFC5441 - A Backward-Recursive PCE-Based Computation (BRPC) Procedure to Compute Shortest Constrained Inter-Domain Traffic Engineering Label Switched Paths
The ability to compute shortest constrained Traffic Engineering Label Switched Paths (TE LSPs) in Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS) networks across multiple domains has been identified as a key requirement. In this context, a domain is a collection of network elements within a common sphere of address management or path computational responsibility such as an IGP area or an Autonomous Systems. This document specifies a procedure relying on the use of multiple Path Computation Elements (PCEs) to compute such inter-domain shortest constrained paths across a predetermined sequence of domains, using a backward-recursive path computation technique. This technique preserves confidentiality across domains, which is sometimes required when domains are managed by different service providers. [STANDARDS-TRACK]
RFC5455 - Diffserv-Aware Class-Type Object for the Path Computation Element Communication Protocol
This document specifies a CLASSTYPE object to support Diffserv-Aware Traffic Engineering (DS-TE) where path computation is performed with the aid of a Path Computation Element (PCE). [STANDARDS-TRACK]
RFC5520 - Preserving Topology Confidentiality in Inter-Domain Path Computation Using a Path-Key-Based Mechanism
Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS) Traffic Engineering (TE) Label Switched Paths (LSPs) may be computed by Path Computation Elements (PCEs). Where the TE LSP crosses multiple domains, such as Autonomous Systems (ASes), the path may be computed by multiple PCEs that cooperate, with each responsible for computing a segment of the path. However, in some cases (e.g., when ASes are administered by separate Service Providers), it would break confidentiality rules for a PCE to supply a path segment to a PCE in another domain, thus disclosing AS-internal topology information. This issue may be circumvented by returning a loose hop and by invoking a new path computation from the domain boundary Label Switching Router (LSR) during TE LSP setup as the signaling message enters the second domain, but this technique has several issues including the problem of maintaining path diversity.
This document defines a mechanism to hide the contents of a segment of a path, called the Confidential Path Segment (CPS). The CPS may be replaced by a path-key that can be conveyed in the PCE Communication Protocol (PCEP) and signaled within in a Resource Reservation Protocol TE (RSVP-TE) explicit route object. [STANDARDS-TRACK]
RFC5521 - Extensions to the Path Computation Element Communication Protocol (PCEP) for Route Exclusions
The Path Computation Element (PCE) provides functions of path computation in support of traffic engineering (TE) in Multi-Protocol Label Switching (MPLS) and Generalized MPLS (GMPLS) networks.
When a Path Computation Client (PCC) requests a PCE for a route, it may be useful for the PCC to specify, as constraints to the path computation, abstract nodes, resources, and Shared Risk Link Groups (SRLGs) that are to be explicitly excluded from the computed route. Such constraints are termed "route exclusions".
The PCE Communication Protocol (PCEP) is designed as a communication protocol between PCCs and PCEs. This document presents PCEP extensions for route exclusions. [STANDARDS-TRACK]
RFC5541 - Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)
The computation of one or a set of Traffic Engineering Label Switched Paths (TE LSPs) in MultiProtocol Label Switching (MPLS) and Generalized MPLS (GMPLS) networks is subject to a set of one or more specific optimization criteria, referred to as objective functions (e.g., minimum cost path, widest path, etc.).
In the Path Computation Element (PCE) architecture, a Path Computation Client (PCC) may want a path to be computed for one or more TE LSPs according to a specific objective function. Thus, the PCC needs to instruct the PCE to use the correct objective function. Furthermore, it is possible that not all PCEs support the same set of objective functions; therefore, it is useful for the PCC to be able to automatically discover the set of objective functions supported by each PCE.
This document defines extensions to the PCE communication Protocol (PCEP) to allow a PCE to indicate the set of objective functions it supports. Extensions are also defined so that a PCC can indicate in a path computation request the required objective function, and a PCE can report in a path computation reply the objective function that was used for path computation.
This document defines objective function code types for six objective functions previously listed in the PCE requirements work, and provides the definition of four new metric types that apply to a set of synchronized requests. [STANDARDS-TRACK]
RFC5557 - Path Computation Element Communication Protocol (PCEP) Requirements and Protocol Extensions in Support of Global Concurrent Optimization
The Path Computation Element Communication Protocol (PCEP) allows Path Computation Clients (PCCs) to request path computations from Path Computation Elements (PCEs), and lets the PCEs return responses. When computing or reoptimizing the routes of a set of Traffic Engineering Label Switched Paths (TE LSPs) through a network, it may be advantageous to perform bulk path computations in order to avoid blocking problems and to achieve more optimal network-wide solutions. Such bulk optimization is termed Global Concurrent Optimization (GCO). A GCO is able to simultaneously consider the entire topology of the network and the complete set of existing TE LSPs, and their respective constraints, and look to optimize or reoptimize the entire network to satisfy all constraints for all TE LSPs. A GCO may also be applied to some subset of the TE LSPs in a network. The GCO application is primarily a Network Management System (NMS) solution.
This document provides application-specific requirements and the PCEP extensions in support of GCO applications. [STANDARDS-TRACK]
RFC5623 - Framework for PCE-Based Inter-Layer MPLS and GMPLS Traffic Engineering
A network may comprise multiple layers. It is important to globally optimize network resource utilization, taking into account all layers rather than optimizing resource utilization at each layer independently. This allows better network efficiency to be achieved through a process that we call inter-layer traffic engineering. The Path Computation Element (PCE) can be a powerful tool to achieve inter-layer traffic engineering.
This document describes a framework for applying the PCE-based architecture to inter-layer Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS) traffic engineering. It provides suggestions for the deployment of PCE in support of multi-layer networks. This document also describes network models where PCE performs inter-layer traffic engineering, and the relationship between PCE and a functional component called the Virtual Network Topology Manager (VNTM). This memo provides information for the Internet community.
RFC5671 - Applicability of the Path Computation Element (PCE) to Point-to-Multipoint (P2MP) MPLS and GMPLS Traffic Engineering (TE)
The Path Computation Element (PCE) provides path computation functions in support of traffic engineering in Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS) networks.
Extensions to the MPLS and GMPLS signaling and routing protocols have been made in support of point-to-multipoint (P2MP) Traffic Engineered (TE) Label Switched Paths (LSPs).
This document examines the applicability of PCE to path computation for P2MP TE LSPs in MPLS and GMPLS networks. It describes the motivation for using a PCE to compute these paths and examines which of the PCE architectural models are appropriate. This memo provides information for the Internet community.
RFC5862 - Path Computation Clients (PCC) - Path Computation Element (PCE) Requirements for Point-to-Multipoint MPLS-TE
The Path Computation Element (PCE) provides path computation functions in support of traffic engineering in Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS) networks.
Extensions to the MPLS and GMPLS signaling and routing protocols have been made in support of point-to-multipoint (P2MP) Traffic Engineered (TE) Label Switched Paths (LSPs). The use of PCE in MPLS networks is already established, and since P2MP TE LSP routes are sometimes complex to compute, it is likely that PCE will be used for P2MP LSPs.
Generic requirements for a communication protocol between Path Computation Clients (PCCs) and PCEs are presented in RFC 4657, "Path Computation Element (PCE) Communication Protocol Generic Requirements". This document complements the generic requirements and presents a detailed set of PCC-PCE communication protocol requirements for point-to-multipoint MPLS/GMPLS traffic engineering. This document is not an Internet Standards Track specification; it is published for informational purposes.
RFC5886 - A Set of Monitoring Tools for Path Computation Element (PCE)-Based Architecture
A Path Computation Element (PCE)-based architecture has been specified for the computation of Traffic Engineering (TE) Label Switched Paths (LSPs) in Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS) networks in the context of single or multiple domains (where a domain refers to a collection of network elements within a common sphere of address management or path computational responsibility such as Interior Gateway Protocol (IGP) areas and Autonomous Systems). Path Computation Clients (PCCs) send computation requests to PCEs, and these may forward the requests to and cooperate with other PCEs forming a "path computation chain".
In PCE-based environments, it is thus critical to monitor the state of the path computation chain for troubleshooting and performance monitoring purposes: liveness of each element (PCE) involved in the PCE chain and detection of potential resource contention states and statistics in terms of path computation times are examples of such metrics of interest. This document specifies procedures and extensions to the Path Computation Element Protocol (PCEP) in order to gather such information. [STANDARDS-TRACK]
RFC6006 - Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths
Point-to-point Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS) Traffic Engineering Label Switched Paths (TE LSPs) may be established using signaling techniques, but their paths may first need to be determined. The Path Computation Element (PCE) has been identified as an appropriate technology for the determination of the paths of point-to-multipoint (P2MP) TE LSPs.
This document describes extensions to the PCE communication Protocol (PCEP) to handle requests and responses for the computation of paths for P2MP TE LSPs. [STANDARDS-TRACK]
RFC6007 - Use of the Synchronization VECtor (SVEC) List for Synchronized Dependent Path Computations
A Path Computation Element (PCE) may be required to perform dependent path computations. Dependent path computations are requests that need to be synchronized in order to meet specific objectives. An example of a dependent request would be a PCE computing a set of services that are required to be diverse (disjointed) from each other. When a PCE computes sets of dependent path computation requests concurrently, use of the Synchronization VECtor (SVEC) list is required for association among the sets of dependent path computation requests. The SVEC object is optional and carried within the Path Computation Element Communication Protocol (PCEP) PCRequest (PCReq) message.
This document does not specify the PCEP SVEC object or procedure. This informational document clarifies the use of the SVEC list for synchronized path computations when computing dependent requests. The document also describes a number of usage scenarios for SVEC lists within single-domain and multi-domain environments. This document is not an Internet Standards Track specification; it is published for informational purposes.
RFC6123 - Inclusion of Manageability Sections in Path Computation Element (PCE) Working Group Drafts
It has often been the case that manageability considerations have been retrofitted to protocols after they have been specified, standardized, implemented, or deployed. This is sub-optimal. Similarly, new protocols or protocol extensions are frequently designed without due consideration of manageability requirements.
The Operations Area has developed "Guidelines for Considering Operations and Management of New Protocols and Protocol Extensions" (RFC 5706), and those guidelines have been adopted by the Path Computation Element (PCE) Working Group.
Previously, the PCE Working Group used the recommendations contained in this document to guide authors of Internet-Drafts on the contents of "Manageability Considerations" sections in their work. This document is retained for historic reference. This document defines a Historic Document for the Internet community.
RFC6457 - PCC-PCE Communication and PCE Discovery Requirements for Inter-Layer Traffic Engineering
The Path Computation Element (PCE) provides functions of path computation in support of traffic engineering in networks controlled by Multi-Protocol Label Switching (MPLS) and Generalized MPLS (GMPLS).
MPLS and GMPLS networks may be constructed from layered client/server networks. It is advantageous for overall network efficiency to provide end-to-end traffic engineering across multiple network layers. PCE is a candidate solution for such requirements.
Generic requirements for a communication protocol between Path Computation Clients (PCCs) and PCEs are presented in RFC 4657, "Path Computation Element (PCE) Communication Protocol Generic Requirements". Generic requirements for a PCE discovery protocol are presented in RFC 4674, "Requirements for Path Computation Element (PCE) Discovery".
This document complements the generic requirements and presents detailed sets of PCC-PCE communication protocol requirements and PCE discovery protocol requirements for inter-layer traffic engineering. This document is not an Internet Standards Track specification; it is published for informational purposes.
RFC6805 - The Application of the Path Computation Element Architecture to the Determination of a Sequence of Domains in MPLS and GMPLS
Computing optimum routes for Label Switched Paths (LSPs) across multiple domains in MPLS Traffic Engineering (MPLS-TE) and GMPLS networks presents a problem because no single point of path computation is aware of all of the links and resources in each domain. A solution may be achieved using the Path Computation Element (PCE) architecture.
Where the sequence of domains is known a priori, various techniques can be employed to derive an optimum path. If the domains are simply connected, or if the preferred points of interconnection are also known, the Per-Domain Path Computation technique can be used. Where there are multiple connections between domains and there is no preference for the choice of points of interconnection, the Backward-Recursive PCE-based Computation (BRPC) procedure can be used to derive an optimal path.
This document examines techniques to establish the optimum path when the sequence of domains is not known in advance. The document shows how the PCE architecture can be extended to allow the optimum sequence of domains to be selected, and the optimum end-to-end path to be derived through the use of a hierarchical relationship between domains. This document is not an Internet Standards Track specification; it is published for informational purposes.
RFC7025 - Requirements for GMPLS Applications of PCE
The initial effort of the PCE (Path Computation Element) WG focused mainly on MPLS. As a next step, this document describes functional requirements for GMPLS applications of PCE.
RFC7150 - Conveying Vendor-Specific Constraints in the Path Computation Element Communication Protocol
The Path Computation Element Communication Protocol (PCEP) is used to convey path computation requests and responses both between Path Computation Clients (PCCs) and Path Computation Elements (PCEs) and between cooperating PCEs. In PCEP, the path computation requests carry details of the constraints and objective functions that the PCC wishes the PCE to apply in its computation.
This document defines a facility to carry vendor-specific information in PCEP using a dedicated object and a new Type-Length-Variable that can be carried in any existing PCEP object.
RFC7334 - PCE-Based Computation Procedure to Compute Shortest Constrained Point-to-Multipoint (P2MP) Inter-Domain Traffic Engineering Label Switched Paths
The ability to compute paths for constrained point-to-multipoint (P2MP) Traffic Engineering Label Switched Paths (TE LSPs) across multiple domains has been identified as a key requirement for the deployment of P2MP services in MPLS- and GMPLS-controlled networks. The Path Computation Element (PCE) has been recognized as an appropriate technology for the determination of inter-domain paths of P2MP TE LSPs.
This document describes an experiment to provide procedures and extensions to the PCE Communication Protocol (PCEP) for the computation of inter-domain paths for P2MP TE LSPs.
RFC7399 - Unanswered Questions in the Path Computation Element Architecture
The Path Computation Element (PCE) architecture is set out in RFC 4655. The architecture is extended for multi-layer networking with the introduction of the Virtual Network Topology Manager (VNTM) in RFC 5623 and generalized to Hierarchical PCE (H-PCE) in RFC 6805.
These three architectural views of PCE deliberately leave some key questions unanswered, especially with respect to the interactions between architectural components. This document draws out those questions and discusses them in an architectural context with reference to other architectural components, existing protocols, and recent IETF efforts.
This document does not update the architecture documents and does not define how protocols or components must be used. It does, however, suggest how the architectural components might be combined to provide advanced PCE function.
RFC7420 - Path Computation Element Communication Protocol (PCEP) Management Information Base (MIB) Module
This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes managed objects for modeling of the Path Computation Element Communication Protocol (PCEP) for communications between a Path Computation Client (PCC) and a Path Computation Element (PCE), or between two PCEs.
RFC7449 - Path Computation Element Communication Protocol (PCEP) Requirements for Wavelength Switched Optical Network (WSON) Routing and Wavelength Assignment
This memo provides application-specific requirements for the Path Computation Element Communication Protocol (PCEP) for the support of Wavelength Switched Optical Networks (WSONs). Lightpath provisioning in WSONs requires a Routing and Wavelength Assignment (RWA) process. From a path computation perspective, wavelength assignment is the process of determining which wavelength can be used on each hop of a path and forms an additional routing constraint to optical light path computation. Requirements for PCEP extensions in support of optical impairments will be addressed in a separate document.
RFC7470 - Conveying Vendor-Specific Constraints in the Path Computation Element Communication Protocol
The Path Computation Element Communication Protocol (PCEP) is used to convey path computation requests and responses both between Path Computation Clients (PCCs) and Path Computation Elements (PCEs) and between cooperating PCEs. In PCEP, the path computation requests carry details of the constraints and objective functions that the PCC wishes the PCE to apply in its computation.
This document defines a facility to carry vendor-specific information in PCEP using a dedicated object and a new Type-Length-Value (TLV) that can be carried in any PCEP object that supports TLVs.
This document obsoletes RFC 7150. The only changes from that document are a clarification of the use of the new Type-Length-Value and the allocation of a different code point for the VENDOR-INFORMATION object.
RFC7896 - Update to the Include Route Object (IRO) Specification in the Path Computation Element Communication Protocol (PCEP)
The Path Computation Element Communication Protocol (PCEP) enables communications between a Path Computation Client (PCC) and a PCE, or between two PCEs. RFC 5440 defines the Include Route Object (IRO) to specify network elements to be traversed in the computed path. The specification does not specify if the IRO contains an ordered or unordered list of subobjects. During recent discussions, it was determined that there was a need to define a standard representation to ensure interoperability. It was also noted that there is a benefit in the handling of an attribute of the IRO's subobject, the L bit.
This document updates RFC 5440 regarding the IRO specification.
RFC7897 - Domain Subobjects for the Path Computation Element Communication Protocol (PCEP)
The ability to compute shortest constrained Traffic Engineering Label Switched Paths (TE LSPs) in Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS) networks across multiple domains has been identified as a key requirement. In this context, a domain is a collection of network elements within a common sphere of address management or path computational responsibility such as an Interior Gateway Protocol (IGP) area or an Autonomous System (AS). This document specifies a representation and encoding of a domain sequence, which is defined as an ordered sequence of domains traversed to reach the destination domain to be used by Path Computation Elements (PCEs) to compute inter-domain constrained shortest paths across a predetermined sequence of domains. This document also defines new subobjects to be used to encode domain identifiers.
RFC8051 - Applicability of a Stateful Path Computation Element (PCE)
A stateful Path Computation Element (PCE) maintains information about Label Switched Path (LSP) characteristics and resource usage within a network in order to provide traffic-engineering calculations for its associated Path Computation Clients (PCCs). This document describes general considerations for a stateful PCE deployment and examines its applicability and benefits, as well as its challenges and limitations, through a number of use cases. PCE Communication Protocol (PCEP) extensions required for stateful PCE usage are covered in separate documents.