Home

Rmcat Workgroup RFCs

Browse Rmcat Workgroup RFCs by Number

RFC8298 - Self-Clocked Rate Adaptation for Multimedia
This memo describes a rate adaptation algorithm for conversational media services such as interactive video. The solution conforms to the packet conservation principle and uses a hybrid loss-and-delay- based congestion control algorithm. The algorithm is evaluated over both simulated Internet bottleneck scenarios as well as in a Long Term Evolution (LTE) system simulator and is shown to achieve both low latency and high video throughput in these scenarios.
RFC8382 - Shared Bottleneck Detection for Coupled Congestion Control for RTP Media
This document describes a mechanism to detect whether end-to-end data flows share a common bottleneck. This mechanism relies on summary statistics that are calculated based on continuous measurements and used as input to a grouping algorithm that runs wherever the knowledge is needed.
RFC8593 - Video Traffic Models for RTP Congestion Control Evaluations
This document describes two reference video traffic models for evaluating RTP congestion control algorithms. The first model statistically characterizes the behavior of a live video encoder in response to changing requests on the target video rate. The second model is trace-driven and emulates the output of actual encoded video frame sizes from a high-resolution test sequence. Both models are designed to strike a balance between simplicity, repeatability, and authenticity in modeling the interactions between a live video traffic source and the congestion control module. Finally, the document describes how both approaches can be combined into a hybrid model.
RFC8698 - Network-Assisted Dynamic Adaptation (NADA): A Unified Congestion Control Scheme for Real-Time Media
This document describes Network-Assisted Dynamic Adaptation (NADA), a novel congestion control scheme for interactive real-time media applications such as video conferencing. In the proposed scheme, the sender regulates its sending rate, based on either implicit or explicit congestion signaling, in a unified approach. The scheme can benefit from Explicit Congestion Notification (ECN) markings from network nodes. It also maintains consistent sender behavior in the absence of such markings by reacting to queuing delays and packet losses instead.
RFC8699 - Coupled Congestion Control for RTP Media
When multiple congestion-controlled Real-time Transport Protocol (RTP) sessions traverse the same network bottleneck, combining their controls can improve the total on-the-wire behavior in terms of delay, loss, and fairness. This document describes such a method for flows that have the same sender, in a way that is as flexible and simple as possible while minimizing the number of changes needed to existing RTP applications. This document also specifies how to apply the method for the Network-Assisted Dynamic Adaptation (NADA) congestion control algorithm and provides suggestions on how to apply it to other congestion control algorithms.