Home

RFC3484

  1. RFC 3484
Network Working Group                                          R. Draves
Request for Comments: 3484                            Microsoft Research
Category: Standards Track                                  February 2003


   Default Address Selection for Internet Protocol version 6 (IPv6)

Status of this Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (C) The Internet Society (2003).  All Rights Reserved.

Abstract

   This document describes two algorithms, for source address selection
   and for destination address selection.  The algorithms specify
   default behavior for all Internet Protocol version 6 (IPv6)
   implementations.  They do not override choices made by applications
   or upper-layer protocols, nor do they preclude the development of
   more advanced mechanisms for address selection.  The two algorithms
   share a common context, including an optional mechanism for allowing
   administrators to provide policy that can override the default
   behavior.  In dual stack implementations, the destination address
   selection algorithm can consider both IPv4 and IPv6 addresses -
   depending on the available source addresses, the algorithm might
   prefer IPv6 addresses over IPv4 addresses, or vice-versa.

   All IPv6 nodes, including both hosts and routers, must implement
   default address selection as defined in this specification.















Draves                      Standards Track                     [Page 1]
RFC 3484           Default Address Selection for IPv6      February 2003


Table of Contents

   1.    Introduction................................................2
         1.1.  Conventions Used in This Document.....................4
   2.    Context in Which the Algorithms Operate.....................4
         2.1.  Policy Table..........................................5
         2.2.  Common Prefix Length..................................6
   3.    Address Properties..........................................6
         3.1.  Scope Comparisons.....................................7
         3.2.  IPv4 Addresses and IPv4-Mapped Addresses..............7
         3.3.  Other IPv6 Addresses with Embedded IPv4 Addresses.....8
         3.4.  IPv6 Loopback Address and Other Format Prefixes.......8
         3.5.  Mobility Addresses....................................8
   4.    Candidate Source Addresses..................................8
   5.    Source Address Selection...................................10
   6.    Destination Address Selection..............................12
   7.    Interactions with Routing..................................14
   8.    Implementation Considerations..............................15
   9.    Security Considerations....................................15
   10.   Examples...................................................16
         10.1. Default Source Address Selection.....................16
         10.2. Default Destination Address Selection................17
         10.3. Configuring Preference for IPv6 or IPv4..............18
         10.4. Configuring Preference for Scoped Addresses..........19
         10.5. Configuring a Multi-Homed Site.......................19
   Normative References.............................................21
   Informative References...........................................22
   Acknowledgments..................................................23
   Author's Address.................................................23
   Full Copyright Statement.........................................24

1. Introduction

   The IPv6 addressing architecture [1] allows multiple unicast
   addresses to be assigned to interfaces.  These addresses may have
   different reachability scopes (link-local, site-local, or global).
   These addresses may also be "preferred" or "deprecated" [2].  Privacy
   considerations have introduced the concepts of "public addresses" and
   "temporary addresses" [3].  The mobility architecture introduces
   "home addresses" and "care-of addresses" [8].  In addition, multi-
   homing situations will result in more addresses per node.  For
   example, a node may have multiple interfaces, some of them tunnels or
   virtual interfaces, or a site may have multiple ISP attachments with
   a global prefix per ISP.

   The end result is that IPv6 implementations will very often be faced
   with multiple possible source and destination addresses when
   initiating communication.  It is desirable to have default



Draves                      Standards Track                     [Page 2]
RFC 3484           Default Address Selection for IPv6      February 2003


   algorithms, common across all implementations, for selecting source
   and destination addresses so that developers and administrators can
   reason about and predict the behavior of their systems.

   Furthermore, dual or hybrid stack implementations, which support both
   IPv6 and IPv4, will very often need to choose between IPv6 and IPv4
   when initiating communication.  For example, when DNS name resolution
   yields both IPv6 and IPv4 addresses and the network protocol stack
   has available both IPv6 and IPv4 source addresses.  In such cases, a
   simple policy to always prefer IPv6 or always prefer IPv4 can produce
   poor behavior.  As one example, suppose a DNS name resolves to a
   global IPv6 address and a global IPv4 address.  If the node has
   assigned a global IPv6 address and a 169.254/16 auto-configured IPv4
   address [9], then IPv6 is the best choice for communication.  But if
   the node has assigned only a link-local IPv6 address and a global
   IPv4 address, then IPv4 is the best choice for communication.  The
   destination address selection algorithm solves this with a unified
   procedure for choosing among both IPv6 and IPv4 addresses.

   The algorithms in this document are specified as a set of rules that
   define a partial ordering on the set of addresses that are available
   for use.  In the case of source address selection, a node typically
   has multiple addresses assigned to its interfaces, and the source
   address ordering rules in section 5 define which address is the
   "best" one to use.  In the case of destination address selection, the
   DNS may return a set of addresses for a given name, and an
   application needs to decide which one to use first, and in what order
   to try others should the first one not be reachable.  The destination
   address ordering rules in section 6, when applied to the set of
   addresses returned by the DNS, provide such a recommended ordering.

   This document specifies source address selection and destination
   address selection separately, but using a common context so that
   together the two algorithms yield useful results.  The algorithms
   attempt to choose source and destination addresses of appropriate
   scope and configuration status (preferred or deprecated in the RFC
   2462 sense).  Furthermore, this document suggests a preferred method,
   longest matching prefix, for choosing among otherwise equivalent
   addresses in the absence of better information.

   This document also specifies policy hooks to allow administrative
   override of the default behavior.  For example, using these hooks an
   administrator can specify a preferred source prefix for use with a
   destination prefix, or prefer destination addresses with one prefix
   over addresses with another prefix.  These hooks give an
   administrator flexibility in dealing with some multi-homing and
   transition scenarios, but they are certainly not a panacea.




Draves                      Standards Track                     [Page 3]
RFC 3484           Default Address Selection for IPv6      February 2003


   The selection rules specified in this document MUST NOT be construed
   to override an application or upper-layer's explicit choice of a
   legal destination or source address.

1.1. Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in BCP 14, RFC 2119 [4].

2. Context in Which the Algorithms Operate

   Our context for address selection derives from the most common
   implementation architecture, which separates the choice of
   destination address from the choice of source address.  Consequently,
   we have two separate algorithms for these tasks.  The algorithms are
   designed to work well together and they share a mechanism for
   administrative policy override.

   In this implementation architecture, applications use APIs [10] like
   getaddrinfo() that return a list of addresses to the application.
   This list might contain both IPv6 and IPv4 addresses (sometimes
   represented as IPv4-mapped addresses).  The application then passes a
   destination address to the network stack with connect() or sendto().
   The application would then typically try the first address in the
   list, looping over the list of addresses until it finds a working
   address.  In any case, the network layer is never in a situation
   where it needs to choose a destination address from several
   alternatives.  The application might also specify a source address
   with bind(), but often the source address is left unspecified.
   Therefore the network layer does often choose a source address from
   several alternatives.

   As a consequence, we intend that implementations of getaddrinfo()
   will use the destination address selection algorithm specified here
   to sort the list of IPv6 and IPv4 addresses that they return.
   Separately, the IPv6 network layer will use the source address
   selection algorithm when an application or upper-layer has not
   specified a source address.  Application of this specification to
   source address selection in an IPv4 network layer may be possible but
   this is not explored further here.

   Well-behaved applications SHOULD iterate through the list of
   addresses returned from getaddrinfo() until they find a working
   address.






Draves                      Standards Track                     [Page 4]
RFC 3484           Default Address Selection for IPv6      February 2003


   The algorithms use several criteria in making their decisions.  The
   combined effect is to prefer destination/source address pairs for
   which the two addresses are of equal scope or type, prefer smaller
   scopes over larger scopes for the destination address, prefer non-
   deprecated source addresses, avoid the use of transitional addresses
   when native addresses are available, and all else being equal prefer
   address pairs having the longest possible common prefix.  For source
   address selection, public addresses [3] are preferred over temporary
   addresses.  In mobile situations [8], home addresses are preferred
   over care-of addresses.  If an address is simultaneously a home
   address and a care-of address (indicating the mobile node is "at
   home" for that address), then the home/care-of address is preferred
   over addresses that are solely a home address or solely a care-of
   address.

   This specification optionally allows for the possibility of
   administrative configuration of policy that can override the default
   behavior of the algorithms.  The policy override takes the form of a
   configurable table that specifies precedence values and preferred
   source prefixes for destination prefixes.  If an implementation is
   not configurable, or if an implementation has not been configured,
   then the default policy table specified in this document SHOULD be
   used.

2.1. Policy Table

   The policy table is a longest-matching-prefix lookup table, much like
   a routing table.  Given an address A, a lookup in the policy table
   produces two values:  a precedence value Precedence(A) and a
   classification or label Label(A).

   The precedence value Precedence(A) is used for sorting destination
   addresses.  If Precedence(A) > Precedence(B), we say that address A
   has higher precedence than address B, meaning that our algorithm will
   prefer to sort destination address A before destination address B.

   The label value Label(A) allows for policies that prefer a particular
   source address prefix for use with a destination address prefix.  The
   algorithms prefer to use a source address S with a destination
   address D if Label(S) = Label(D).

   IPv6 implementations SHOULD support configurable address selection
   via a mechanism at least as powerful as the policy tables defined
   here.  Note that at the time of this writing there is only limited
   experience with the use of policies that select from a set of
   possible IPv6 addresses.  As more experience is gained, the
   recommended default policies may change.  Consequently it is
   important that implementations provide a way to change the default



Draves                      Standards Track                     [Page 5]
RFC 3484           Default Address Selection for IPv6      February 2003


   policies as more experience is gained.  Sections 10.3 and 10.4
   provide examples of the kind of changes that might be needed.

   If an implementation is not configurable or has not been configured,
   then it SHOULD operate according to the algorithms specified here in
   conjunction with the following default policy table:

      Prefix        Precedence Label
      ::1/128               50     0
      ::/0                  40     1
      2002::/16             30     2
      ::/96                 20     3
      ::ffff:0:0/96         10     4

   One effect of the default policy table is to prefer using native
   source addresses with native destination addresses, 6to4 [5] source
   addresses with 6to4 destination addresses, and v4-compatible [1]
   source addresses with v4-compatible destination addresses.  Another
   effect of the default policy table is to prefer communication using
   IPv6 addresses to communication using IPv4 addresses, if matching
   source addresses are available.

   Policy table entries for scoped address prefixes MAY be qualified
   with an optional zone index.  If so, a prefix table entry only
   matches against an address during a lookup if the zone index also
   matches the address's zone index.

2.2. Common Prefix Length

   We define the common prefix length CommonPrefixLen(A, B) of two
   addresses A and B as the length of the longest prefix (looking at the
   most significant, or leftmost, bits) that the two addresses have in
   common.  It ranges from 0 to 128.

3. Address Properties

   In the rules given in later sections, addresses of different types
   (e.g., IPv4, IPv6, multicast and unicast) are compared against each
   other.  Some of these address types have properties that aren't
   directly comparable to each other.  For example, IPv6 unicast
   addresses can be "preferred" or "deprecated" [2], while IPv4
   addresses have no such notion.  To compare such addresses using the
   ordering rules (e.g., to use "preferred" addresses in preference to
   "deprecated" addresses), the following mappings are defined.







Draves                      Standards Track                     [Page 6]
RFC 3484           Default Address Selection for IPv6      February 2003


3.1. Scope Comparisons

   Multicast destination addresses have a 4-bit scope field that
   controls the propagation of the multicast packet.  The IPv6
   addressing architecture defines scope field values for interface-
   local (0x1), link-local (0x2), subnet-local (0x3), admin-local (0x4),
   site-local (0x5), organization-local (0x8), and global (0xE)
   scopes [11].

   Use of the source address selection algorithm in the presence of
   multicast destination addresses requires the comparison of a unicast
   address scope with a multicast address scope.  We map unicast link-
   local to multicast link-local, unicast site-local to multicast site-
   local, and unicast global scope to multicast global scope.  For
   example, unicast site-local is equal to multicast site-local, which
   is smaller than multicast organization-local, which is smaller than
   unicast global, which is equal to multicast global.

   We write Scope(A) to mean the scope of address A.  For example, if A
   is a link-local unicast address and B is a site-local multicast
   address, then Scope(A) < Scope(B).

   This mapping implicitly conflates unicast site boundaries and
   multicast site boundaries [11].

3.2. IPv4 Addresses and IPv4-Mapped Addresses

   The destination address selection algorithm operates on both IPv6 and
   IPv4 addresses.  For this purpose, IPv4 addresses should be
   represented as IPv4-mapped addresses [1].  For example, to lookup the
   precedence or other attributes of an IPv4 address in the policy
   table, lookup the corresponding IPv4-mapped IPv6 address.

   IPv4 addresses are assigned scopes as follows.  IPv4 auto-
   configuration addresses [9], which have the prefix 169.254/16, are
   assigned link-local scope.  IPv4 private addresses [12], which have
   the prefixes 10/8, 172.16/12, and 192.168/16, are assigned site-local
   scope.  IPv4 loopback addresses [12, section 4.2.2.11], which have
   the prefix 127/8, are assigned link-local scope (analogously to the
   treatment of the IPv6 loopback address [11, section 4]).  Other IPv4
   addresses are assigned global scope.

   IPv4 addresses should be treated as having "preferred" (in the RFC
   2462 sense) configuration status.







Draves                      Standards Track                     [Page 7]
RFC 3484           Default Address Selection for IPv6      February 2003


3.3. Other IPv6 Addresses with Embedded IPv4 Addresses

   IPv4-compatible addresses [1], IPv4-mapped [1], IPv4-translatable [6]
   and 6to4 addresses [5] contain an embedded IPv4 address.  For the
   purposes of this document, these addresses should be treated as
   having global scope.

   IPv4-compatible, IPv4-mapped, and IPv4-translatable addresses should
   be treated as having "preferred" (in the RFC 2462 sense)
   configuration status.

3.4. IPv6 Loopback Address and Other Format Prefixes

   The loopback address should be treated as having link-local scope
   [11, section 4] and "preferred" (in the RFC 2462 sense) configuration
   status.

   NSAP addresses and other addresses with as-yet-undefined format
   prefixes should be treated as having global scope and "preferred" (in
   the RFC 2462) configuration status.  Later standards may supersede
   this treatment.

3.5. Mobility Addresses

   Some nodes may support mobility using the concepts of a home address
   and a care-of address (for example see [8]). Conceptually, a home
   address is an IP address assigned to a mobile node and used as the
   permanent address of the mobile node. A care-of address is an IP
   address associated with a mobile node while visiting a foreign link.
   When a mobile node is on its home link, it may have an address that
   is simultaneously a home address and a care-of address.

   For the purposes of this document, it is sufficient to know whether
   or not one's own addresses are designated as home addresses or care-
   of addresses.  Whether or not an address should be designated a home
   address or care-of address is outside the scope of this document.

4. Candidate Source Addresses

   The source address selection algorithm uses the concept of a
   "candidate set" of potential source addresses for a given destination
   address.  The candidate set is the set of all addresses that could be
   used as a source address; the source address selection algorithm will
   pick an address out of that set.  We write CandidateSource(A) to
   denote the candidate set for the address A.






Draves                      Standards Track                     [Page 8]
RFC 3484           Default Address Selection for IPv6      February 2003


   It is RECOMMENDED that the candidate source addresses be the set of
   unicast addresses assigned to the interface that will be used to send
   to the destination.  (The "outgoing" interface.)  On routers, the
   candidate set MAY include unicast addresses assigned to any interface
   that forwards packets, subject to the restrictions described below.

      Discussion:  The Neighbor Discovery Redirect mechanism [14]
      requires that routers verify that the source address of a packet
      identifies a neighbor before generating a Redirect, so it is
      advantageous for hosts to choose source addresses assigned to the
      outgoing interface.  Implementations that wish to support the use
      of global source addresses assigned to a loopback interface should
      behave as if the loopback interface originates and forwards the
      packet.

   In some cases the destination address may be qualified with a zone
   index or other information that will constrain the candidate set.

   For multicast and link-local destination addresses, the set of
   candidate source addresses MUST only include addresses assigned to
   interfaces belonging to the same link as the outgoing interface.

      Discussion:  The restriction for multicast destination addresses
      is necessary because currently-deployed multicast forwarding
      algorithms use Reverse Path Forwarding (RPF) checks.

   For site-local destination addresses, the set of candidate source
   addresses MUST only include addresses assigned to interfaces
   belonging to the same site as the outgoing interface.

   In any case, anycast addresses, multicast addresses, and the
   unspecified address MUST NOT be included in a candidate set.

   If an application or upper-layer specifies a source address that is
   not in the candidate set for the destination, then the network layer
   MUST treat this as an error.  The specified source address may
   influence the candidate set, by affecting the choice of outgoing
   interface.  If the application or upper-layer specifies a source
   address that is in the candidate set for the destination, then the
   network layer MUST respect that choice.  If the application or
   upper-layer does not specify a source address, then the network layer
   uses the source address selection algorithm specified in the next
   section.

   On IPv6-only nodes that support SIIT [6, especially section 5], if
   the destination address is an IPv4-mapped address then the candidate
   set MUST contain only IPv4-translatable addresses.  If the




Draves                      Standards Track                     [Page 9]
RFC 3484           Default Address Selection for IPv6      February 2003


   destination address is not an IPv4-mapped address, then the candidate
   set MUST NOT contain IPv4-translatable addresses.

5. Source Address Selection

   The source address selection algorithm produces as output a single
   source address for use with a given destination address.  This
   algorithm only applies to IPv6 destination addresses, not IPv4
   addresses.

   The algorithm is specified here in terms of a list of pair-wise
   comparison rules that (for a given destination address D) imposes a
   "greater than" ordering on the addresses in the candidate set
   CandidateSource(D).  The address at the front of the list after the
   algorithm completes is the one the algorithm selects.

   Note that conceptually, a sort of the candidate set is being
   performed, where a set of rules define the ordering among addresses.
   But because the output of the algorithm is a single source address,
   an implementation need not actually sort the set; it need only
   identify the "maximum" value that ends up at the front of the sorted
   list.

   The ordering of the addresses in the candidate set is defined by a
   list of eight pair-wise comparison rules, with each rule placing a
   "greater than," "less than" or "equal to" ordering on two source
   addresses with respect to each other (and that rule).  In the case
   that a given rule produces a tie, i.e., provides an "equal to" result
   for the two addresses, the remaining rules are applied (in order) to
   just those addresses that are tied to break the tie.  Note that if a
   rule produces a single clear "winner" (or set of "winners" in the
   case of ties), those addresses not in the winning set can be
   discarded from further consideration, with subsequent rules applied
   only to the remaining addresses.  If the eight rules fail to choose a
   single address, some unspecified tie-breaker should be used.

   When comparing two addresses SA and SB from the candidate set, we say
   "prefer SA" to mean that SA is "greater than" SB, and similarly we
   say "prefer SB" to mean that SA is "less than" SB.

   Rule 1:  Prefer same address.
   If SA = D, then prefer SA.  Similarly, if SB = D, then prefer SB.

   Rule 2:  Prefer appropriate scope.
   If Scope(SA) < Scope(SB): If Scope(SA) < Scope(D), then prefer SB
   and otherwise prefer SA.  Similarly, if Scope(SB) < Scope(SA): If
   Scope(SB) < Scope(D), then prefer SA and otherwise prefer SB.




Draves                      Standards Track                    [Page 10]
RFC 3484           Default Address Selection for IPv6      February 2003


   Rule 3:  Avoid deprecated addresses.
   The addresses SA and SB have the same scope.  If one of the two
   source addresses is "preferred" and one of them is "deprecated" (in
   the RFC 2462 sense), then prefer the one that is "preferred."

   Rule 4:  Prefer home addresses.
   If SA is simultaneously a home address and care-of address and SB is
   not, then prefer SA.  Similarly, if SB is simultaneously a home
   address and care-of address and SA is not, then prefer SB.
   If SA is just a home address and SB is just a care-of address, then
   prefer SA.  Similarly, if SB is just a home address and SA is just a
   care-of address, then prefer SB.

   Implementations should provide a mechanism allowing an application to
   reverse the sense of this preference and prefer care-of addresses
   over home addresses (e.g., via appropriate API extensions).  Use of
   the mechanism should only affect the selection rules for the invoking
   application.

   Rule 5:  Prefer outgoing interface.
   If SA is assigned to the interface that will be used to send to D
   and SB is assigned to a different interface, then prefer SA.
   Similarly, if SB is assigned to the interface that will be used to
   send to D and SA is assigned to a different interface, then prefer
   SB.

   Rule 6:  Prefer matching label.
   If Label(SA) = Label(D) and Label(SB) <> Label(D), then prefer SA.
   Similarly, if Label(SB) = Label(D) and Label(SA) <> Label(D), then
   prefer SB.

   Rule 7:  Prefer public addresses.
   If SA is a public address and SB is a temporary address, then prefer
   SA.  Similarly, if SB is a public address and SA is a temporary
   address, then prefer SB.

   Implementations MUST provide a mechanism allowing an application to
   reverse the sense of this preference and prefer temporary addresses
   over public addresses (e.g., via appropriate API extensions).  Use of
   the mechanism should only affect the selection rules for the invoking
   application. This rule avoids applications potentially failing due to
   the relatively short lifetime of temporary addresses or due to the
   possibility of the reverse lookup of a temporary address either
   failing or returning a randomized name.  Implementations for which
   privacy considerations outweigh these application compatibility
   concerns MAY reverse the sense of this rule and by default prefer
   temporary addresses over public addresses.




Draves                      Standards Track                    [Page 11]
RFC 3484           Default Address Selection for IPv6      February 2003


   Rule 8:  Use longest matching prefix.
   If CommonPrefixLen(SA, D) > CommonPrefixLen(SB, D), then prefer SA.
   Similarly, if CommonPrefixLen(SB, D) > CommonPrefixLen(SA, D), then
   prefer SB.

   Rule 8 may be superseded if the implementation has other means of
   choosing among source addresses.  For example, if the implementation
   somehow knows which source address will result in the "best"
   communications performance.

   Rule 2 (prefer appropriate scope) MUST be implemented and given high
   priority because it can affect interoperability.

6. Destination Address Selection

   The destination address selection algorithm takes a list of
   destination addresses and sorts the addresses to produce a new list.
   It is specified here in terms of the pair-wise comparison of
   addresses DA and DB, where DA appears before DB in the original list.

   The algorithm sorts together both IPv6 and IPv4 addresses.  To find
   the attributes of an IPv4 address in the policy table, the IPv4
   address should be represented as an IPv4-mapped address.

   We write Source(D) to indicate the selected source address for a
   destination D.  For IPv6 addresses, the previous section specifies
   the source address selection algorithm.  Source address selection for
   IPv4 addresses is not specified in this document.

   We say that Source(D) is undefined if there is no source address
   available for destination D.  For IPv6 addresses, this is only the
   case if CandidateSource(D) is the empty set.

   The pair-wise comparison of destination addresses consists of ten
   rules, which should be applied in order.  If a rule determines a
   result, then the remaining rules are not relevant and should be
   ignored.  Subsequent rules act as tie-breakers for earlier rules.
   See the previous section for a lengthier description of how pair-wise
   comparison tie-breaker rules can be used to sort a list.

   Rule 1:  Avoid unusable destinations.
   If DB is known to be unreachable or if Source(DB) is undefined, then
   prefer DA.  Similarly, if DA is known to be unreachable or if
   Source(DA) is undefined, then prefer DB.

      Discussion:  An implementation may know that a particular
      destination is unreachable in several ways.  For example, the
      destination may be reached through a network interface that is



Draves                      Standards Track                    [Page 12]
RFC 3484           Default Address Selection for IPv6      February 2003


      currently unplugged.  For example, the implementation may retain
      for some period of time information from Neighbor Unreachability
      Detection [14].  In any case, the determination of unreachability
      for the purposes of this rule is implementation-dependent.

   Rule 2:  Prefer matching scope.
   If Scope(DA) = Scope(Source(DA)) and Scope(DB) <> Scope(Source(DB)),
   then prefer DA.  Similarly, if Scope(DA) <> Scope(Source(DA)) and
   Scope(DB) = Scope(Source(DB)), then prefer DB.

   Rule 3:  Avoid deprecated addresses.
   If Source(DA) is deprecated and Source(DB) is not, then prefer DB.
   Similarly, if Source(DA) is not deprecated and Source(DB) is
   deprecated, then prefer DA.

   Rule 4:  Prefer home addresses.
   If Source(DA) is simultaneously a home address and care-of address
   and Source(DB) is not, then prefer DA.  Similarly, if Source(DB) is
   simultaneously a home address and care-of address and Source(DA) is
   not, then prefer DB.

   If Source(DA) is just a home address and Source(DB) is just a care-of
   address, then prefer DA.  Similarly, if Source(DA) is just a care-of
   address and Source(DB) is just a home address, then prefer DB.

   Rule 5:  Prefer matching label.
   If Label(Source(DA)) = Label(DA) and Label(Source(DB)) <> Label(DB),
   then prefer DA.  Similarly, if Label(Source(DA)) <> Label(DA) and
   Label(Source(DB)) = Label(DB), then prefer DB.

   Rule 6:  Prefer higher precedence.
   If Precedence(DA) > Precedence(DB), then prefer DA.  Similarly, if
   Precedence(DA) < Precedence(DB), then prefer DB.

   Rule 7:  Prefer native transport.
   If DA is reached via an encapsulating transition mechanism (e.g.,
   IPv6 in IPv4) and DB is not, then prefer DB.  Similarly, if DB
   is reached via encapsulation and DA is not, then prefer DA.

      Discussion:  6-over-4 [15], ISATAP [16], and configured tunnels
      [17] are examples of encapsulating transition mechanisms for which
      the destination address does not have a specific prefix and hence
      can not be assigned a lower precedence in the policy table.  An
      implementation MAY generalize this rule by using a concept of
      interface preference, and giving virtual interfaces (like the
      IPv6-in-IPv4 encapsulating interfaces) a lower preference than
      native interfaces (like ethernet interfaces).




Draves                      Standards Track                    [Page 13]
RFC 3484           Default Address Selection for IPv6      February 2003


   Rule 8:  Prefer smaller scope.
   If Scope(DA) < Scope(DB), then prefer DA.  Similarly, if Scope(DA) >
   Scope(DB), then prefer DB.

   Rule 9:  Use longest matching prefix.
   When DA and DB belong to the same address family (both are IPv6 or
   both are IPv4): If CommonPrefixLen(DA, Source(DA)) >
   CommonPrefixLen(DB, Source(DB)), then prefer DA.  Similarly, if
   CommonPrefixLen(DA, Source(DA)) < CommonPrefixLen(DB, Source(DB)),
   then prefer DB.

   Rule 10:  Otherwise, leave the order unchanged.
   If DA preceded DB in the original list, prefer DA.  Otherwise prefer
   DB.

   Rules 9 and 10 may be superseded if the implementation has other
   means of sorting destination addresses.  For example, if the
   implementation somehow knows which destination addresses will result
   in the "best" communications performance.

7. Interactions with Routing

   This specification of source address selection assumes that routing
   (more precisely, selecting an outgoing interface on a node with
   multiple interfaces) is done before source address selection.
   However, implementations may use source address considerations as a
   tiebreaker when choosing among otherwise equivalent routes.

   For example, suppose a node has interfaces on two different links,
   with both links having a working default router.  Both of the
   interfaces have preferred (in the RFC 2462 sense) global addresses.
   When sending to a global destination address, if there's no routing
   reason to prefer one interface over the other, then an implementation
   may preferentially choose the outgoing interface that will allow it
   to use the source address that shares a longer common prefix with the
   destination.

   Implementations may also use the choice of router to influence the
   choice of source address.  For example, suppose a host is on a link
   with two routers.  One router is advertising a global prefix A and
   the other router is advertising global prefix B.  Then when sending
   via the first router, the host may prefer source addresses with
   prefix A and when sending via the second router, prefer source
   addresses with prefix B.







Draves                      Standards Track                    [Page 14]
RFC 3484           Default Address Selection for IPv6      February 2003


8. Implementation Considerations

   The destination address selection algorithm needs information about
   potential source addresses.  One possible implementation strategy is
   for getaddrinfo() to call down to the network layer with a list of
   destination addresses, sort the list in the network layer with full
   current knowledge of available source addresses, and return the
   sorted list to getaddrinfo().  This is simple and gives the best
   results but it introduces the overhead of another system call.  One
   way to reduce this overhead is to cache the sorted address list in
   the resolver, so that subsequent calls for the same name do not need
   to resort the list.

   Another implementation strategy is to call down to the network layer
   to retrieve source address information and then sort the list of
   addresses directly in the context of getaddrinfo().  To reduce
   overhead in this approach, the source address information can be
   cached, amortizing the overhead of retrieving it across multiple
   calls to getaddrinfo().  In this approach, the implementation may not
   have knowledge of the outgoing interface for each destination, so it
   MAY use a looser definition of the candidate set during destination
   address ordering.

   In any case, if the implementation uses cached and possibly stale
   information in its implementation of destination address selection,
   or if the ordering of a cached list of destination addresses is
   possibly stale, then it should ensure that the destination address
   ordering returned to the application is no more than one second out
   of date.  For example, an implementation might make a system call to
   check if any routing table entries or source address assignments that
   might affect these algorithms have changed.  Another strategy is to
   use an invalidation counter that is incremented whenever any
   underlying state is changed.  By caching the current invalidation
   counter value with derived state and then later comparing against the
   current value, the implementation could detect if the derived state
   is potentially stale.

9. Security Considerations

   This document has no direct impact on Internet infrastructure
   security.

   Note that most source address selection algorithms, including the one
   specified in this document, expose a potential privacy concern.  An
   unfriendly node can infer correlations among a target node's
   addresses by probing the target node with request packets that force
   the target host to choose its source address for the reply packets.
   (Perhaps because the request packets are sent to an anycast or



Draves                      Standards Track                    [Page 15]
RFC 3484           Default Address Selection for IPv6      February 2003


   multicast address, or perhaps the upper-layer protocol chosen for the
   attack does not specify a particular source address for its reply
   packets.)  By using different addresses for itself, the unfriendly
   node can cause the target node to expose the target's own addresses.

10. Examples

   This section contains a number of examples, first of default behavior
   and then demonstrating the utility of policy table configuration.
   These examples are provided for illustrative purposes; they should
   not be construed as normative.

10.1. Default Source Address Selection

   The source address selection rules, in conjunction with the default
   policy table, produce the following behavior:

   Destination: 2001::1
   Candidate Source Addresses: 3ffe::1 or fe80::1
   Result: 3ffe::1 (prefer appropriate scope)

   Destination: 2001::1
   Candidate Source Addresses: fe80::1 or fec0::1
   Result: fec0::1 (prefer appropriate scope)

   Destination: fec0::1
   Candidate Source Addresses: fe80::1 or 2001::1
   Result: 2001::1 (prefer appropriate scope)

   Destination: ff05::1
   Candidate Source Addresses: fe80::1 or fec0::1 or 2001::1
   Result: fec0::1 (prefer appropriate scope)

   Destination: 2001::1
   Candidate Source Addresses: 2001::1 (deprecated) or 2002::1
   Result: 2001::1 (prefer same address)

   Destination: fec0::1
   Candidate Source Addresses: fec0::2 (deprecated) or 2001::1
   Result: fec0::2 (prefer appropriate scope)

   Destination: 2001::1
   Candidate Source Addresses: 2001::2 or 3ffe::2
   Result: 2001::2 (longest-matching-prefix)







Draves                      Standards Track                    [Page 16]
RFC 3484           Default Address Selection for IPv6      February 2003


   Destination: 2001::1
   Candidate Source Addresses: 2001::2 (care-of address) or 3ffe::2
   (home address)
   Result: 3ffe::2 (prefer home address)

   Destination: 2002:836b:2179::1
   Candidate Source Addresses: 2002:836b:2179::d5e3:7953:13eb:22e8
   (temporary) or 2001::2
   Result: 2002:836b:2179::d5e3:7953:13eb:22e8 (prefer matching label)

   Destination: 2001::d5e3:0:0:1
   Candidate Source Addresses: 2001::2 or 2001::d5e3:7953:13eb:22e8
   (temporary)
   Result: 2001::2 (prefer public address)

10.2. Default Destination Address Selection

   The destination address selection rules, in conjunction with the
   default policy table and the source address selection rules, produce
   the following behavior:

   Candidate Source Addresses: 2001::2 or fe80::1 or 169.254.13.78
   Destination Address List: 2001::1 or 131.107.65.121
   Result: 2001::1 (src 2001::2) then 131.107.65.121 (src
   169.254.13.78) (prefer matching scope)

   Candidate Source Addresses: fe80::1 or 131.107.65.117
   Destination Address List: 2001::1 or 131.107.65.121
   Result: 131.107.65.121 (src 131.107.65.117) then 2001::1 (src
   fe80::1) (prefer matching scope)

   Candidate Source Addresses: 2001::2 or fe80::1 or 10.1.2.4
   Destination Address List: 2001::1 or 10.1.2.3
   Result: 2001::1 (src 2001::2) then 10.1.2.3 (src 10.1.2.4) (prefer
   higher precedence)

   Candidate Source Addresses: 2001::2 or fec0::2 or fe80::2
   Destination Address List: 2001::1 or fec0::1 or fe80::1
   Result: fe80::1 (src fe80::2) then fec0::1 (src fec0::2) then
   2001::1 (src 2001::2) (prefer smaller scope)

   Candidate Source Addresses: 2001::2 (care-of address) or 3ffe::1
   (home address) or fec0::2 (care-of address) or fe80::2 (care-of
   address)
   Destination Address List: 2001::1 or fec0::1
   Result: 2001:1 (src 3ffe::1) then fec0::1 (src fec0::2) (prefer home
   address)




Draves                      Standards Track                    [Page 17]
RFC 3484           Default Address Selection for IPv6      February 2003


   Candidate Source Addresses: 2001::2 or fec0::2 (deprecated) or
   fe80::2
   Destination Address List: 2001::1 or fec0::1
   Result: 2001::1 (src 2001::2) then fec0::1 (src fec0::2) (avoid
   deprecated addresses)

   Candidate Source Addresses: 2001::2 or 3f44::2 or fe80::2
   Destination Address List: 2001::1 or 3ffe::1
   Result: 2001::1 (src 2001::2) then 3ffe::1 (src 3f44::2) (longest
   matching prefix)

   Candidate Source Addresses: 2002:836b:4179::2 or fe80::2
   Destination Address List: 2002:836b:4179::1 or 2001::1
   Result: 2002:836b:4179::1 (src 2002:836b:4179::2) then 2001::1 (src
   2002:836b:4179::2) (prefer matching label)

   Candidate Source Addresses: 2002:836b:4179::2 or 2001::2 or fe80::2
   Destination Address List: 2002:836b:4179::1 or 2001::1
   Result: 2001::1 (src 2001::2) then 2002:836b:4179::1 (src
   2002:836b:4179::2) (prefer higher precedence)

10.3. Configuring Preference for IPv6 or IPv4

   The default policy table gives IPv6 addresses higher precedence than
   IPv4 addresses.  This means that applications will use IPv6 in
   preference to IPv4 when the two are equally suitable.  An
   administrator can change the policy table to prefer IPv4 addresses by
   giving the ::ffff:0.0.0.0/96 prefix a higher precedence:

      Prefix        Precedence Label
      ::1/128               50     0
      ::/0                  40     1
      2002::/16             30     2
      ::/96                 20     3
      ::ffff:0:0/96        100     4

   This change to the default policy table produces the following
   behavior:

   Candidate Source Addresses: 2001::2 or fe80::1 or 169.254.13.78
   Destination Address List: 2001::1 or 131.107.65.121
   Unchanged Result: 2001::1 (src 2001::2) then 131.107.65.121 (src
   169.254.13.78) (prefer matching scope)

   Candidate Source Addresses: fe80::1 or 131.107.65.117
   Destination Address List: 2001::1 or 131.107.65.121
   Unchanged Result: 131.107.65.121 (src 131.107.65.117) then 2001::1
   (src fe80::1) (prefer matching scope)



Draves                      Standards Track                    [Page 18]
RFC 3484           Default Address Selection for IPv6      February 2003


   Candidate Source Addresses: 2001::2 or fe80::1 or 10.1.2.4
   Destination Address List: 2001::1 or 10.1.2.3
   New Result: 10.1.2.3 (src 10.1.2.4) then 2001::1 (src 2001::2)
   (prefer higher precedence)

10.4. Configuring Preference for Scoped Addresses

   The destination address selection rules give preference to
   destinations of smaller scope.  For example, a site-local destination
   will be sorted before a global scope destination when the two are
   otherwise equally suitable.  An administrator can change the policy
   table to reverse this preference and sort global destinations before
   site-local destinations, and site-local destinations before link-
   local destinations:

      Prefix        Precedence Label
      ::1/128               50     0
      ::/0                  40     1
      fec0::/10             37     1
      fe80::/10             33     1
      2002::/16             30     2
      ::/96                 20     3
      ::ffff:0:0/96         10     4

   This change to the default policy table produces the following
   behavior:

   Candidate Source Addresses: 2001::2 or fec0::2 or fe80::2
   Destination Address List: 2001::1 or fec0::1 or fe80::1
   New Result: 2001::1 (src 2001::2) then fec0::1 (src fec0::2) then
   fe80::1 (src fe80::2) (prefer higher precedence)

   Candidate Source Addresses: 2001::2 (deprecated) or fec0::2 or
   fe80::2
   Destination Address List: 2001::1 or fec0::1
   Unchanged Result: fec0::1 (src fec0::2) then 2001::1 (src 2001::2)
   (avoid deprecated addresses)

10.5. Configuring a Multi-Homed Site

   Consider a site A that has a business-critical relationship with
   another site B.  To support their business needs, the two sites have
   contracted for service with a special high-performance ISP.  This is
   in addition to the normal Internet connection that both sites have
   with different ISPs.  The high-performance ISP is expensive and the
   two sites wish to use it only for their business-critical traffic
   with each other.




Draves                      Standards Track                    [Page 19]
RFC 3484           Default Address Selection for IPv6      February 2003


   Each site has two global prefixes, one from the high-performance ISP
   and one from their normal ISP.  Site A has prefix 2001:aaaa:aaaa::/48
   from the high-performance ISP and prefix 2007:0:aaaa::/48 from its
   normal ISP.  Site B has prefix 2001:bbbb:bbbb::/48 from the high-
   performance ISP and prefix 2007:0:bbbb::/48 from its normal ISP.  All
   hosts in both sites register two addresses in the DNS.

   The routing within both sites directs most traffic to the egress to
   the normal ISP, but the routing directs traffic sent to the other
   site's 2001 prefix to the egress to the high-performance ISP.  To
   prevent unintended use of their high-performance ISP connection, the
   two sites implement ingress filtering to discard traffic entering
   from the high-performance ISP that is not from the other site.

   The default policy table and address selection rules produce the
   following behavior:

   Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or
   fe80::a
   Destination Address List: 2001:bbbb:bbbb::b or 2007:0:bbbb::b
   Result: 2007:0:bbbb::b (src 2007:0:aaaa::a) then 2001:bbbb:bbbb::b
   (src 2001:aaaa:aaaa::a) (longest matching prefix)

   In other words, when a host in site A initiates a connection to a
   host in site B, the traffic does not take advantage of their
   connections to the high-performance ISP.  This is not their desired
   behavior.

   Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or
   fe80::a
   Destination Address List: 2001:cccc:cccc::c or 2006:cccc:cccc::c
   Result: 2001:cccc:cccc::c (src 2001:aaaa:aaaa::a) then
   2006:cccc:cccc::c (src 2007:0:aaaa::a) (longest matching prefix)

   In other words, when a host in site A initiates a connection to a
   host in some other site C, the reverse traffic may come back through
   the high-performance ISP.  Again, this is not their desired behavior.

   This predicament demonstrates the limitations of the longest-
   matching-prefix heuristic in multi-homed situations.

   However, the administrators of sites A and B can achieve their
   desired behavior via policy table configuration.  For example, they
   can use the following policy table:







Draves                      Standards Track                    [Page 20]
RFC 3484           Default Address Selection for IPv6      February 2003


      Prefix              Precedence Label
      ::1                         50     0
      2001:aaaa:aaaa::/48         45     5
      2001:bbbb:bbbb::/48         45     5
      ::/0                        40     1
      2002::/16                   30     2
      ::/96                       20     3
      ::ffff:0:0/96               10     4

   This policy table produces the following behavior:

   Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or
   fe80::a
   Destination Address List: 2001:bbbb:bbbb::b or 2007:0:bbbb::b
   New Result: 2001:bbbb:bbbb::b (src 2001:aaaa:aaaa::a) then
   2007:0:bbbb::b (src 2007:0:aaaa::a) (prefer higher precedence)

   In other words, when a host in site A initiates a connection to a
   host in site B, the traffic uses the high-performance ISP as desired.

   Candidate Source Addresses: 2001:aaaa:aaaa::a or 2007:0:aaaa::a or
   fe80::a
   Destination Address List: 2001:cccc:cccc::c or 2006:cccc:cccc::c
   New Result: 2006:cccc:cccc::c (src 2007:0:aaaa::a) then
   2001:cccc:cccc::c (src 2007:0:aaaa::a) (longest matching prefix)

   In other words, when a host in site A initiates a connection to a
   host in some other site C, the traffic uses the normal ISP as
   desired.

Normative References

   [1]  Hinden, R. and S. Deering, "IP Version 6 Addressing
        Architecture", RFC 2373, July 1998.

   [2]  Thompson, S. and T. Narten, "IPv6 Stateless Address
        Autoconfiguration", RFC 2462 , December 1998.

   [3]  Narten, T. and R. Draves, "Privacy Extensions for Stateless
        Address Autoconfiguration in IPv6", RFC 3041, January 2001.

   [4]  Bradner, S., "Key words for use in RFCs to Indicate Requirement
        Levels", BCP 14, RFC 2119, March 1997.

   [5]  Carpenter, B. and K. Moore, "Connection of IPv6 Domains via IPv4
        Clouds", RFC 3056, February 2001.





Draves                      Standards Track                    [Page 21]
RFC 3484           Default Address Selection for IPv6      February 2003


   [6]  Nordmark, E., "Stateless IP/ICMP Translation Algorithm (SIIT)",
        RFC 2765, February 2000.

Informative References

   [7]  Bradner, S., "The Internet Standards Process -- Revision 3", BCP
        9, RFC 2026, October 1996.

   [8]  Johnson, D. and C. Perkins, "Mobility Support in IPv6", Work in
        Progress.

   [9]  S. Cheshire, B. Aboba, "Dynamic Configuration of IPv4 Link-local
        Addresses", Work in Progress.

   [10] Gilligan, R., Thomson, S., Bound, J. and W. Stevens, "Basic
        Socket Interface Extensions for IPv6", RFC 2553, March 1999.

   [11] S. Deering et. al, "IP Version 6 Scoped Address Architecture",
        Work in Progress.

   [12] Rekhter, Y., Moskowitz, B., Karrenberg, D., de Groot, G. and E.
        Lear, "Address Allocation for Private Internets", BCP 5, RFC
        1918, February 1996.

   [13] Baker, F, "Requirements for IP Version 4 Routers", RFC 1812,
        June 1995.

   [14] Narten, T. and E. Nordmark, and W. Simpson, "Neighbor Discovery
        for IP Version 6", RFC 2461, December 1998.

   [15] Carpenter, B. and C. Jung, "Transmission of IPv6 over IPv4
        Domains without Explicit Tunnels", RFC 2529, March 1999.

   [16] F. Templin et. al, "Intra-Site Automatic Tunnel Addressing
        Protocol (ISATAP)", Work in Progress.

   [17] Gilligan, R. and E. Nordmark, "Transition Mechanisms for IPv6
        Hosts and Routers", RFC 1933, April 1996.













Draves                      Standards Track                    [Page 22]
RFC 3484           Default Address Selection for IPv6      February 2003


Acknowledgments

   The author would like to acknowledge the contributions of the IPng
   Working Group, particularly Marc Blanchet, Brian Carpenter, Matt
   Crawford, Alain Durand, Steve Deering, Robert Elz, Jun-ichiro itojun
   Hagino, Tony Hain, M.T. Hollinger, JINMEI Tatuya, Thomas Narten, Erik
   Nordmark, Ken Powell, Markku Savela, Pekka Savola, Hesham Soliman,
   Dave Thaler, Mauro Tortonesi, Ole Troan, and Stig Venaas.  In
   addition, the anonymous IESG reviewers had many great comments and
   suggestions for clarification.

Author's Address

   Richard Draves
   Microsoft Research
   One Microsoft Way
   Redmond, WA 98052

   Phone: +1 425 706 2268
   EMail: richdr@microsoft.com































Draves                      Standards Track                    [Page 23]
RFC 3484           Default Address Selection for IPv6      February 2003


Full Copyright Statement

   Copyright (C) The Internet Society (2003).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

   Funding for the RFC Editor function is currently provided by the
   Internet Society.



















Draves                      Standards Track                    [Page 24]
  1. RFC 3484