Home

Homenet Workgroup RFCs

Browse Homenet Workgroup RFCs by Number

RFC7368 - IPv6 Home Networking Architecture Principles
This text describes evolving networking technology within residential home networks with increasing numbers of devices and a trend towards increased internal routing. The goal of this document is to define a general architecture for IPv6-based home networking, describing the associated principles, considerations, and requirements. The text briefly highlights specific implications of the introduction of IPv6 for home networking, discusses the elements of the architecture, and suggests how standard IPv6 mechanisms and addressing can be employed in home networking. The architecture describes the need for specific protocol extensions for certain additional functionality. It is assumed that the IPv6 home network is not actively managed and runs as an IPv6-only or dual-stack network. There are no recommendations in this text for the IPv4 part of the network.
RFC7695 - Distributed Prefix Assignment Algorithm
This document specifies a distributed algorithm for dividing a set of prefixes in a manner that allows for automatic assignment of sub-prefixes that are unique and non-overlapping. Used in conjunction with a protocol that provides flooding of information among a set of participating nodes, prefix configuration within a network may be automated.
RFC7787 - Distributed Node Consensus Protocol
This document describes the Distributed Node Consensus Protocol (DNCP), a generic state synchronization protocol that uses the Trickle algorithm and hash trees. DNCP is an abstract protocol and must be combined with a specific profile to make a complete implementable protocol.
RFC7788 - Home Networking Control Protocol
This document describes the Home Networking Control Protocol (HNCP), an extensible configuration protocol, and a set of requirements for home network devices. HNCP is described as a profile of and extension to the Distributed Node Consensus Protocol (DNCP). HNCP enables discovery of network borders, automated configuration of addresses, name resolution, service discovery, and the use of any routing protocol that supports routing based on both the source and destination address.