Home

6tisch Workgroup RFCs

Browse 6tisch Workgroup RFCs by Number

RFC7554 - Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement
This document describes the environment, problem statement, and goals for using the Time-Slotted Channel Hopping (TSCH) Medium Access Control (MAC) protocol of IEEE 802.14.4e in the context of Low-Power and Lossy Networks (LLNs). The set of goals enumerated in this document form an initial set only.
RFC8180 - Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration
This document describes a minimal mode of operation for an IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) network. This minimal mode of operation specifies the baseline set of protocols that need to be supported and the recommended configurations and modes of operation sufficient to enable a 6TiSCH functional network. 6TiSCH provides IPv6 connectivity over a Time-Slotted Channel Hopping (TSCH) mesh composed of IEEE Std 802.15.4 TSCH links. This minimal mode uses a collection of protocols with the respective configurations, including the IPv6 Low-Power Wireless Personal Area Network (6LoWPAN) framework, enabling interoperable IPv6 connectivity over IEEE Std 802.15.4 TSCH. This minimal configuration provides the necessary bandwidth for network and security bootstrapping and defines the proper link between the IETF protocols that interface to IEEE Std 802.15.4 TSCH. This minimal mode of operation should be implemented by all 6TiSCH-compliant devices.
RFC8480 - 6TiSCH Operation Sublayer (6top) Protocol (6P)
This document defines the "IPv6 over the TSCH mode of IEEE 802.15.4e" (6TiSCH) Operation Sublayer (6top) Protocol (6P), which enables distributed scheduling in 6TiSCH networks. 6P allows neighbor nodes to add/delete Time-Slotted Channel Hopping (TSCH) cells to/on one another. 6P is part of the 6TiSCH Operation Sublayer (6top), the layer just above the IEEE Std 802.15.4 TSCH Medium Access Control layer. 6top is composed of one or more Scheduling Functions (SFs) and the 6top Protocol defined in this document. A 6top SF decides when to add/delete cells, and it triggers 6P Transactions. The definition of SFs is out of scope for this document; however, this document provides the requirements for an SF.
RFC9030 - An Architecture for IPv6 over the Time-Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH)
This document describes a network architecture that provides low-latency, low-jitter, and high-reliability packet delivery. It combines a high-speed powered backbone and subnetworks using IEEE 802.15.4 time-slotted channel hopping (TSCH) to meet the requirements of low-power wireless deterministic applications.
RFC9031 - Constrained Join Protocol (CoJP) for 6TiSCH
This document describes the minimal framework required for a new device, called a "pledge", to securely join a 6TiSCH (IPv6 over the Time-Slotted Channel Hopping mode of IEEE 802.15.4) network. The framework requires that the pledge and the JRC (Join Registrar/Coordinator, a central entity), share a symmetric key. How this key is provisioned is out of scope of this document. Through a single CoAP (Constrained Application Protocol) request-response exchange secured by OSCORE (Object Security for Constrained RESTful Environments), the pledge requests admission into the network, and the JRC configures it with link-layer keying material and other parameters. The JRC may at any time update the parameters through another request-response exchange secured by OSCORE. This specification defines the Constrained Join Protocol and its CBOR (Concise Binary Object Representation) data structures, and it describes how to configure the rest of the 6TiSCH communication stack for this join process to occur in a secure manner. Additional security mechanisms may be added on top of this minimal framework.
RFC9032 - Encapsulation of 6TiSCH Join and Enrollment Information Elements
In the Time-Slotted Channel Hopping (TSCH) mode of IEEE Std 802.15.4, opportunities for broadcasts are limited to specific times and specific channels. Routers in a TSCH network transmit Enhanced Beacon (EB) frames to announce the presence of the network. This document provides a mechanism by which additional information critical for new nodes (pledges) and long-sleeping nodes may be carried within the EB in order to conserve use of broadcast opportunities.
RFC9033 - 6TiSCH Minimal Scheduling Function (MSF)
This specification defines the "IPv6 over the TSCH mode of IEEE 802.15.4" (6TiSCH) Minimal Scheduling Function (MSF). This Scheduling Function describes both the behavior of a node when joining the network and how the communication schedule is managed in a distributed fashion. MSF is built upon the 6TiSCH Operation Sublayer Protocol (6P) and the minimal security framework for 6TiSCH.