Home

Straw Workgroup RFCs

Browse Straw Workgroup RFCs by Number

RFC7584 - Session Traversal Utilities for NAT (STUN) Message Handling for SIP Back-to-Back User Agents (B2BUAs)
Session Initiation Protocol (SIP) Back-to-Back User Agents (B2BUAs) are often designed to be on the media path rather than just intercepting signaling. This means that B2BUAs often act on the media path leading to separate media legs that the B2BUA correlates and bridges together. When acting on the media path, B2BUAs are likely to receive Session Traversal Utilities for NAT (STUN) packets as part of Interactive Connectivity Establishment (ICE) processing.
This document defines behavior for a B2BUA performing ICE processing. The goal of this document is to ensure that B2BUAs properly handle SIP messages that carry ICE semantics in Session Description Protocol (SDP) and STUN messages received as part of the ICE procedures for NAT and Firewall traversal of multimedia sessions.
RFC7879 - DTLS-SRTP Handling in SIP Back-to-Back User Agents
Session Initiation Protocol (SIP) Back-to-Back User Agents (B2BUAs) exist on the signaling and media paths between the endpoints. This document describes the behavior of B2BUAs when Secure Real-time Transport (SRTP) security context is set up with the Datagram Transport Layer Security (DTLS) protocol.
RFC8079 - Guidelines for End-to-End Support of the RTP Control Protocol (RTCP) in Back-to-Back User Agents (B2BUAs)
SIP Back-to-Back User Agents (B2BUAs) are often designed to also be on the media path, rather than just to intercept signalling. This means that B2BUAs often implement an RTP or RTP Control Protocol (RTCP) stack as well, thus leading to separate multimedia sessions that the B2BUA correlates and bridges together. If not disciplined, this behaviour can severely impact the communication experience, especially when statistics and feedback information contained in RTCP messages get lost because of mismatches in the reported data.
This document defines the proper behaviour B2BUAs should follow when acting on both the signalling plane and media plane in order to preserve the end-to-end functionality of RTCP.